Conjugate Salts

1. A salt is made up of a cation and an anion. The cation is typically a conjugate acid and the anion is typically a conjugate base. The strength of these conjugates depends on the strength of the substance from which it was derived.

- 2. This being the case, there are three types of salt solutions that can be formed
 - a. Neutral
 - b. Acidic
 - c. Basic
- 3. How do you determine which solution you have?
 - a. Neutral no effect on the pH.

If the salt is made up of the conjugates of strong acids/bases then the salt is neutral. Remember that these conjugate have acid/base strength weaker than water – so in an aqueous solution they don't react.

For Example:

Break the salt up into its cation and anion components.

Na⁺, like all Group 1A and Group 2A elements are neutral in solution.

 NO_3^- is the conjugate of a strong acid – meaning it is neutral in solution. In fact all of the conjugates of strong acids are neutral in solution. It is a relatively short list to remember. Along with NO_3^- , the list also includes CI^- , CIO_4^- , Br^- , I^- , and CIO_3^- . The conjugates of H_2SO_4 are not included because things get more complicated with polyprotic acids.

b. Acidic – lowers pH

If the salt is made up of a cation that is the conjugate of a weak base and an anion that is the conjugate of a strong acid then the salt is acidic. Remember that the conjugate of a weak base is an acid stronger than water.

For Example:

 NH_4^+ is the conjugate of the weak acid, NH_3 . This means that if this salt was put in solution, the following reaction would take place:

 $NH_{4(aq)}^{+} + H_2O_{(l)} \rightleftharpoons H_3O_{(aq)}^{+} + NH_{3(aq)}$

 CI^- is neutral in solution, as it is the conjugate of a strong acid. So it has no effect on the pH of the solution.

c. Basic – raises pH

If the salt is made up of an anion that is the conjugate of a weak acid and a cation that is the conjugate of a strong base the salt is basic. Remember that the conjugate of a weak acid is a base stronger than water.

For Example:

NaCH₃COO Break the salt up into its cation and anion components. CH_3COO^-

 CH_3COO^- is the conjugate base of a weak acid. This means that if this salt was placed in solution, the following reaction would take place:

 $CH_3COO^-_{(aq)} + H_2O_{(l)} \rightleftharpoons CH_3COOH + ^-OH_{(aq)}$

 Na^{+} is a group 1 cation, so it has no effect on the pH of the solution.

4. How do conjugate pairs equilibrium values relate?

Remember a conjugate pair differ by only one H^+ . The acid has one more H^+ than the base.

$$K_{\alpha} x K_{b} = K_{w}$$

This means that, for a conjugate pair, if you know the equilibrium constant for one, you can solve for the other.

5. What if both conjugates have strength?

You would then need to compare the K_a value of the cation with the K_b value of the anion.

If:

 $K_a = K_b$ the solution is neutral $K_a > K_b$ the solution is acidic $K_a < K_b$ the solution is basic.

For Example:

 $Ka > K_b$ the solution is acidic

6. Calculate the pH of a 0.12M KNO₂ solution. ($K_a = 4.0 \times 10^{-4}$).

The first thing you want to do is determine the type of salt that you have

NO2⁻ will react in aqueous solution.

 $NO_2^{-}(aq) + H_2O_{(l)} \rightarrow \leftarrow HNO_2^{-}(aq) + ^{-}OH_{(aq)}$

 $K_b = \frac{[^{-}OH] [HNO_2]}{[NO_2^{-}]}$

This problem is asking for pH which means, that I need to solve for the concentration of H^+ at equilibrium. If you notice there is no H^+ formed directly by this reaction. That does not mean that there isn't any H^+ in the solution though. This salt is placed in water. Water undergoes autoionization – meaning it produces H^+ . The amount of H^+ it produces is affected by the addition of the basic salt. Remember that

 $[H^+]$ [^{-}OH] = $K_w = 1.0 \times 10^{-14}$

So if you determine the concentration of $[OH^{-}]$ you can solve for the concentration of $[H^{+}]$.

Alternatively, you could solve for the pOH and use the relationship

$$pH + pOH = 14$$

Both methods start with the ICE chart:

	NO ₂ -	+ $H_2O_{(l)}$;	\rightarrow HNO _{2 (aq)}	+ ⁻ OH _(aq)
Ι	0.12M		0	0
С	- <i>x</i>		+x	+x
E	0.12 - x		x	x

$$K_b = \frac{(x) (x)}{(0.12 - x)}$$

You have $K_a \ \underline{not} \ K_b.$ This means you need to solve for K_b using

$$K_a x K_b = K_w$$

$$K_b = \frac{K_w}{K_a} = \frac{1.0 x 10^{-14}}{4.0 x 10^{-4}} = 2.5 x 10^{-11}$$

Now that you have K_b, you can plug it into the equation.

$$K_b = \frac{x^2}{(0.12 - x)} = -2.5 x \ 10^{-11}$$

Because $K_b <<1$ you can make the assumption that 0.12 - x = 0.12

 $\frac{x^2}{0.12} = 2.5 \times 10^{-11}$ $x = 1.73 \times 10^{-6}$

 $\frac{1.73 \times 10^{-6}}{0.12} \times 100 = 1.44 \times 10^{-5} \%$ more than meets the 5% rule.

Now you know the equilibrium concentration of ^{-}OH . At this point you can either solve for the $[H^{+}]$ or solve for the pOH. I'm going to solve for the pOH.

 $pOH = -\log [^{-}OH] = -\log (1.73 \times 10^{-6}) = 5.76$ $pH = 14 - pOH = 14 - 5.76 = \boxed{8.24}$

7. Arrange the following in order of acidic to most basic

CaBr₂, KNO₂, HClO₄, HNO₂, HONH₃ClO₄

Your first step is to identify what type of substance each compound is – meaning a salt, acid or base. If it is a salt break it up into its component pieces and determine their relative acid/base strengths of each.

Now we need to order these substances from most acidic to least acidic. Strongest acidic \rightarrow Strongest base

HClO₄ > HNO₂ (higher K_a value) > HONH₃ClO₄ > CaBr₂ > KNO₂

8. NaN₃ is added to water. Calculate the pH of a 0.010 M sol'n. (Ka = 1.9×10^{-5})

Before you can determine what the reaction equation is – you have to figure out if you have an acidic or basic salt.

 $N_3^-(aq) + H_2O_{(l)} \rightleftharpoons HN_3_{(aq)} + -OH_{(aq)}$

$$K_b = \frac{[HN_3] [^-OH]}{[N_3]]}$$

Make the ICE chart...

	$N_3^-{}_{(aq)}$ +	$+ H_2O_{(l)} = \overline{\mathbf{x}}$	$\Delta = HN_{3}_{(aq)}$ -	+ (aq)
Ι	0.010M		0	0
C	- x		+x	+x
Ε	0.010 - x		x	x

Once again we plug into the equilibrium expression to determine x. Remember that you will be plugging into the expression for K_b – because this is a base reaction. In the problem they gave you the K_a for the conjugate acid HN_3 – so you will first need to solve for K_b .

$$K_b = \frac{K_w}{K_a} = \frac{1 \times 10^{-14}}{1.9 \times 10^{-5}} = 5.26 \times 10^{-10}$$

Now you can plug in and solve for x.

$$5.26 \ x \ 10^{-10} = \frac{x^2}{0.010 - x}$$

As K_b is quite a small number, you are safe to assume that the change to the starting concentration is negligible.

$$5.26 \times 10^{-10} = \frac{x^2}{0.010}$$
$$x = 2.30 \times 10^{-6}$$

Using the 5% rule make sure your assumption was valid

$$\frac{2.30 \times 10^{-6}}{0.010} \times 100 = 0.02\%$$

This answer is well within the parameters of being valid. Once again the x value that you have calculated for relates to the [⁻OH]. So you will initially solve for pOH and then use that value to determine pH.

$$pOH = -\log [^{-}OH] = -\log (2.30 \times 10^{-6}) = 5.63$$

 $pH = 14 - pOH = 14 - 5.63 = \boxed{8.37}$